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In the present paper, a viscoelastic boundary layer flow and heat transfer over an exponentially stretching 
continuous sheet in the presence of a heat source/sink has been examined. Loss of energy due to viscous 
dissipation of the non-Newtonian fluid has been taken into account in this study. Approximate analytical local 
similar solutions of the highly non-linear momentum equation are obtained for velocity distribution by 
transforming the equation into Riccati-type and then solving this sequentially. Accuracy of the zero-order 
analytical solutions for the stream function and velocity are verified by numerical solutions obtained by 
employing the Runge-Kutta fourth order method involving shooting. Similarity solutions of the temperature 
equation for non-isothermal boundary conditions are obtained in the form of confluent hypergeometric functions. 
The effect of various physical parameters on the local skin-friction coefficient and heat transfer characteristics are 
discussed in detail. It is seen that the rate of heat transfer from the stretching sheet to the fluid can be controlled 
by suitably choosing the values of the Prandtl number Pr  and local Eckert number E, local viscioelastic 
parameter *

1k  and local heat source/ sink parameter *.�  
 
Key words:  viscoelastic fluid, boundary layer flow, exponential stretching sheet, heat source/sink, heat transfer 

and skin friction.  
 
1. Introduction 
 
 Pioneering works of Sakiadis (1961) who initiated the study of the boundary layer flow over a 
continuous solid surface moving with constant speed and Crane (1970) on a stretching sheet have led to a 
great deal of work on various aspects of momentum and heat transfer characteristics in a viscoelastic 
boundary layer second order fluid flow over a stretching plastic boundary (Rajagopal et al., 1984; 1987), 
(Troy et al., 1987), (Dandapat and Gupta, 1989), (Chang, 1989), (Rollins and Vajravelu, 1991), (Andersson, 
1992), (Lawrence and Rao, 1992), (Char, 1994). Dandapat et al. (1994) studied such flows and concluded 
that fluid elasticity has a stabilizing influence on the flow provided the wavelength of the disturbances does 
not exceed the viscoelastic length scale. Some of the typical applications of such study are polymer sheet 
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extrusion from a dye, glass fiber and paper production, drawing of plastic films etc. In this process the sheets 
are drawn through a static fluid with a controlled cooling system. Extensive literature is also available 
including those cited above on the two-dimensional viscoelastic boundary layer flow over a stretching 
surface where the velocity of the stretching surface is assumed linearly proportional to the distance from a 
fixed origin. However, it is often argued that (Gupta and Gupta, 1977) realistically stretching of the sheet 
may not necessarily be linear. This situation was beautifully dealt with by Kumaran and Ramanaiah (1996) 
in their work on a boundary layer flow where, probably for the first time, a general quadratic stretching sheet 
has been considered. They analyzed their results in terms of a stream function. However, their work was 
confined to the viscous fluid flow over a permeable stretching sheet. Recently, Khan and Sanjayanand (2004) 
have extended the work of Kumaran and Ramanaiah (1996) to a viscoelastic boundary layer flow over a 
general quadratic stretching sheet. 
 The investigation of heat transfer processes plays an important role in all such theoretical studies. 
This is due to the fact that a number of metallurgical processes in a polymer processing industry involve the 
cooling of continuous sheet or filament. The rate of cooling influences a lot the quality of the final product 
with desired characteristics. Keeping this view we have presented some works on heat transfer in a 
viscoelastic boundary layer flow over a linearly stretching sheet with a non-uniform prescribed boundary 
temperature and boundary heat flux (Prasad et al., 2000; 2002). Recently, Ali (1995) investigated the thermal 
boundary layer by considering a power law stretching surface. A new dimension is added to this 
investigation by Elbashbeshy (2001) who examined the flow and heat transfer characteristics by considering 
a exponentially stretching permeable surface. However, the works of Ali (1995) and Elbashbeshy (2001) are 
confined to the study of a viscous fluid flow only.  
 In reality, most of the fluids considered in industrial applications are more non-Newtonian in nature, 
especially of viscoelastic type than viscous type. And also, there may be a situation of a heat source/sink 
present in the boundary layer. This situation might arise in a flow problem dealing with chemically reactive 
species (Vajravelu, 1994). Foraboschi and Federico (1990) analysed heat transfer by considering linearly a 
temperature dependent heat source which is valid for some exothermic processes. Following a similar 
mathematical formulation for heat source/sink present in the boundary layer we analyse in the present paper 
the heat transfer processes in a viscoelastic fluid flow over an exponentially stretching sheet. An approximate 
analytical local similar solution of zero-order is obtained for stream function and velocity distribution by 
transforming the highly non-linear differential equation into Riccati type and then solving this sequentially. 
Local similar solutions of temperature for non-isothermal boundary conditions are obtained in the form of 
confluent hypergeometric functions. The aim of the article is to analyse the effect of several physical 
parameters like the local viscoelastic parameter, Prandtl number, Reynolds number, Nusselt number, local 
Eckert number and local source/sink parameters on various momentum and heat transfer characteristics in 
the presence of a heat source/sink in a boundary layer that develops over an exponentially stretching 
continuous surface.  
 
2. Formulation of the problem  
 
 The constitutive equation satisfied by a second order fluid was given by Coleman and Noll (1990), 
following the postulates of gradually fading memory, as  
 
  1 2p� � � � � � � � 2

1 2 1T I A � A   (2.1) 
 
where T is the stress tensor, p is the pressure, �  is the dynamic viscosity, ,1 2� �  are the material constants 
with 1 0� � . The stress moduli and1 2A A  are defined as 
 
  	 
 	 
grad grad ,T� �1A q q   (2.2) 
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grad grad .Td
dt

� � � �1
2 1 1

AA A q q A  (2.3) 

 
 Although the second order fluid, obeying model Eq.(2.1) with 1 2� � � , 1 0� � , exhibits some 
undesirable instability characteristics (Fosdick and Rajagopal, 1979) the second order approximation is valid 
at low shear rate (Rajagopal et al., 1984). 
 We consider a steady state laminar flow of an incompressible second order fluid obeying model 
Eq.(2.1) on a semi-infinite 	 
y 0�  stretching sheet. The flow is generated solely due to stretching of the 
elastic sheet by applying two equal and opposite forces along the x-axis keeping the origin fixed (Fig.1). The 
governing boundary layer equations for such flow situations (Cortell, 1994 and Rajagopal et al., 1987) in the 
usual notations, are 
 

  ,u v 0
x y

 


� �

 


  (2.4) 

 

  
2 3 3 3

02 2 3 3
u u u u u v uu v k u v
x y x yy y y y

� �� �
 
 
 
 
 
 
 
� �� �� � � �� �� �� �
 
 
 

 
 
 
� �� �� �
  (2.5) 

 
where u and v are the velocity components in the x and y direction respectively, �  is the kinematic 
coefficient of viscosity and 0k  is the viscoelasticity. Equation (2.5) has been derived with the assumption 
that the normal stress is of the same order of magnitude as that of the shear stress, in addition to usual 
boundary layer approximations. 
 

 
 

Fig.1. Boundary layer over an impermeable exponential stretching sheet. 
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 Further, we assume that there may be a temperature dependent heat source/sink present in the 
boundary layer. In order to determine the temperature distribution in the boundary layer we have to consider 
a modified energy equation for temperature. There are several mathematical formulations of heat source/sink 
to take into account the effect of heat generation / absorption. This includes the inclusion of a source/sink 
term in the energy equation as a constant or as a function of space variable or as a linearly dependent 
function of temperature. Among all these, a temperature dependent heat source/sink in the form 
 

  	 

p

Q T T
c ��

�
 

 
where Q is constant, is well accepted by the researchers (Vajravelu, 1994; Foraboschi and Federico, 1990; 
Rollins and Vajravelu, 1991). Hence, following the same type of mathematical formulation and applying the 
usual boundary layer approximations, the energy equation for temperature may be obtained as the modified 
energy equation of Mahapatra and Gupta (2004) in the following form. 
 

  	 
.
22

2
p p

T T T u Qu v T T
x y c y cy �

� �
 
 
 � 

� � � � � �� �
 
 � 
 �
 � �

 (2.6) 

 

 Here 
p

k
c

� �
�

is the thermal diffusivity of the fluid, k  is the thermal conductivity of the fluid and �  

is the coefficient of viscosity of the fluid. The term Q  represents the volumetric rate of heat generation, i.e., 
heat source when Q 0� and heat absorption, i.e., the heat sink when Q 0� . Other quantities have their 
usual meanings (Dandapat and Gupta, 1989). In deriving Eq.(2.6) it is assumed that the fluid possesses 
strong viscous property in comparison with the elastic property. In view of this assumption we neglect the 
contribution of heat due to elastic deformation. Equation (2.6) is the thermal boundary layer equation which 
takes into account the viscous dissipation.  
 
Boundary conditions on velocity 
 
 Stretching of the boundary surface is such that the velocity distribution along the axial direction is of 
exponential order of the axial coordinate. Hence, we employ the following boundary conditions on velocity 
(Elbashbeshy, 2001). 
 

  

	 
 exp , at ,

, as .

w 0
xu U x U v 0 y 0
l

u 0 y

� �� � � �� �
� �

� � �
  (2.7) 

 
 Here 0U  is a constant and l  is the reference length. Following Elbashbeshy (2001) we have 
considered the above three boundary conditions for the problem. To the best of the authors’ knowledge, all 
the available literature on boundary layer flows of a viscoelastic fluid over linearly stretching sheets deal 
with three boundary conditions on velocity, which are one less than the number required to solve the 
problem uniquely (Rajagopal et al., 1984; 1987; Rollins and Vajravelu 1991; Anderson 1992; Cortell, 1994 
and Mahapatra and Gupta, 2004). Troy et al. (1987) gave an exact solution of the problem for linearly 
stretching boundary conditions. Later, Chang (1989) discussed non-uniqueness of the problem and derived 
different non-unique solutions. Rajagopal (1987) solved the problem with three boundary conditions only 
using perturbation expansion. However, Lawrence and Rao (1992) argue that among all the available 
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solutions Troy’s solution containing exponential terms is physically realistic as it recovers the Navier-
Stokes’ solution when the viscoelastic parameter is taken to be zero. In view of this we present, in the next 
section, physically realistic sequential local similar solutions of the viscoelastic boundary layer equation of 
the fluid flow over an exponentially stretching sheet. 
 
3. Solution of the momentum boundary layer equation  
 
 Equation (2.5) may be rewritten in terms of the stream function 	 
,x y� , which satisfies the equation 
of continuity (2.4), by writing 
 

  , .u v
y x

� 
�

� � �

 


  (3.1) 

 
 Further, the stream function 	 
,x y�  may be non-dimensionalised by assuming  
 

  	 
 	 
, exp ,0
xx y 2 lU f
2l
� �� � �  � �
� �

 (3.2) 

 

  exp .0U xy
2 l 2l

� � � � �� � �
  (3.3) 

 
 Here 	 
f   is the dimensionless stream function and   is the pseudo-similarity variable. Making 
use of Eqs (3.1)-(3.2) in Eq.(2.5) we obtain a fourth order non-linear quasi- ordinary differential equation of 
the form 
 

  * .2 2
1

1 32 f ff f k 3 f f ff f
2 2                

! "� � � � �# $% &
 (3.4) 

 

 Here, * 0 w
1

k Uk �
�

 is the dimensionless local viscoelastic parameter. 

 The boundary conditions on f  are  
 

  

, , at ,

, as .

f 0 f 1 0

f 0

 

 

� �  �

�  ��
 (3.5) 

 
 Integrating Eq.(3.4), we obtain 
 

  * .2 2
1

0

1 3f ff S 3 f k 3 f f f f f d
2 2

 

              
! "� �� � � � � � �  � �# $� �% &'  (3.6) 

 
 Applying the boundary condition at  ��  in Eq.(3.6) we get 
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  * .2 2
1

0

1 3S 3 f k 3 f f ff f d
2 2

�

           
! "� �� � � � �  � �# $� �% &'   (3.7) 

 
 We integrate Eq.(3.6) once again and apply boundary conditions (3.5). This yields 
 

  * .
2

1 1 1 1 1 1 1 1 1 1 1
2 2 2

1 1 2
0 0

1 1 3f f 1 S 3 f k 3 f f f f f d d
2 2 2

  

            

! "� �# $� � �  � � � �   � �# $� �% &
' '  (3.8) 

 
 Now the solution procedure of Eq.(3.8) may be reduced to the sequential solutions of the Riccati-
type equations 
 

  	 
 	 
 	 
 	 
 	 
 	 
	 
R.H.S , , , .
2n n n 1 n 1 n 1 n 11f f f f f f

2
� � � �

           � �   (3.9) 

 
 This iteration algorithm has to be solved by substituting a suitable zero-order approximation 

	 
 	 
0f   for 	 
f   on the R.H.S. 

 We assume a zero-order approximation 	 
 	 
0f   as 
 
  	 
 	 
0f  = 	 
exp ,S�   (3.10) 
 
which satisfies the boundary conditions at infinity. Integrating Eq.(3.10) and making use of the boundary 
condition at 0 �  we get  
 

  	 
 	 
 	 
exp
.0 1 S

f
S

� �  
 �  (3.11) 

 
 Substituting all the derivatives of the zero-order approximation 	 
 	 
0f   into R.H.S of Eq.(3.8) and 

assuming that first order iteration 	 
 	 
1f   on the L.H.S of Eq.(3.8) satisfies the boundary conditions at 
0 �  of Eq.(3.5) we obtain the value of S as  

 

  S=
	 


	 
 	 
*
and .0

0 0
1

3S f 0 S
2 1 k

  � � �
�

 (3.12) 

 
 Here, the equation for first-order iteration 	 
 	 
1f   takes the form 
 

  	 

	 
 	 
 	 


* *
( ) ( ) .

2
0 0

2
1 0 2S S1 1 1
2
0

3 k S k1f f 1 e 1 e 1
2 24S

�  �  
 

�
� � � � � �  (3.13) 
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 Equation (3.13) is the non-linear Riccati type equation and this can be solved for 	 
 	 
1f  . However, 

we shall make use of zero-order solutions 	 
 	 
0f   and ( ) ( )0f   given by Eqs (3.11) and (3.10) respectively, 
as these solutions match very close the numerical solution of Eq.(3.4) (Fig.2). Further, the use of the zero- 
order solutions 	 
 	 
0f   and ( ) ( )0f   of the form of Eqs (3.11) and (3.10), respectively enables us to obtain 
the solution of the heat transfer Eq.(2.6) in the form of confluent hypergeometric functions. 
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Fig.2. Profiles for f( ) and f
 
( ) obtained from numerical as well   as zero order 

           analytical solution when k1
*=0.1 and  k1

*=0.3. 

f0
 
( )

f
 
( )

f0( )

f( )

 

 Zero order analytical solution when k1
*=0.1

 numerical solution when k1
*=0.1

 Zero order analytical solution when k1
*=0.3

 
 
 
 The dimensionless local skin friction coefficient fC  is expressed as  
 

  

*

at ,
exp

.
Re

2

0

f
2
0

0
1

u u u vk u 2
y x y y y

C y 0
2xU
l

S 71 k
22

� �� �
 
 
 
� �� � �� �� �� �
 
 
 
 
� �� �� �� � �
� �
� �
� �

! "� �# $% &

 (3.14) 

 

 Here, Re wU l
�

�
 is the non-dimensional Reynolds number. 

 

 
Fig.2.  Profiles for 	 
f   and 	 
f   obtained from numerical as well as zero order analytical solution 

when .1k 0 1� and .1k 0 3� . 
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4. Solution of the heat transfer equation 
 
 We consider two general cases of non-isothermal temperature boundary conditions, namely:  
(A) boundary with prescribed exponential order surface temperature (PEST); and 
(B) boundary with prescribed exponential order heat flux (PEHF) 
in order to solve the temperature Eq.(2.6) 
 
Case A: Prescribed Exponential Order Surface Temperature (PEST) 
 
 We employ the following non-isothermal boundary condition on temperature in the PEST case 
 

  

exp at ,

as

0
w 0

xT T T T y 0
2l

T T y

�

�

(� �� � � �� �
� �

� ��
 (4.1) 

 
where 0(  and 0T are the parameters of temperature distribution on the stretching surface. T�  is the 
temperature of the ambient fluid far away from the stretching surface. 
 Now we define a dimensionless temperature variable 	 
)   in order to obtain a local similarity 
solution of temperature Eq.(2.6) as follows 
 

  	 

w

T T
T T

�

�

�
)  �

�
 

 
where wT T�� is given by Eq.(4.1). With this dimensionless variable the temperature Eq.(2.6) takes the form 
 
  	 
Pr Pr * Pr E 2

0f v f f      ) � ) � �� ) � �   (4.2) 

 

where Pr �
�
�

 is the Prandtl number, E
04

2 20 w

p 0 0

U U
c T U

�(
� �

� � �
� �

 is the local Eckert number and * 0

w

U
U

� � �  is the 

non-dimensional local source/sink parameter. Here * 0� �  represents source and * 0� �  represents sink. 
 Boundary conditions of temperature in a non-dimensional form are 
 

  
	 


	 


,

.

0 1

0

) �

) � �

  (4.3) 

 
 We proceed to solve Eq.(4.2) by using the zero-order approximation of 	 
f   given by Eq.(3.11). 
Further, we introduce a new dimensionless variable 
 

  Pr .0S
2
0

e
S

�  * � �   (4.4) 
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 Substitution of Eqs (4.4) and (3.11) in Eqs (4.2) - (4.3) leads to the following two-point boundary 
value problem. 
 

  	 
 EPr* *Pr* ,
Pr*

2
0

0
S1  *

�� ��
*) � � �* ) � ( � ) � *� �*� �

  (4.5) 

 
subject to the boundary conditions 
 

  
	 


	 


Pr* ,1

0 0

) * � � �

) * � �

 (4.6) 

 

where PrPr* 2
0S

�  is the modified Prandtl number. 

 We assume the solution of Eq.(4.5) in the form 
 
  	 
 	 
 	 
 ,c p) * � ) * � ) *   (4.7) 
 

	 
c) *  is the complementary solution and 	 
p) *  stands for particular integral. Using the boundary 
conditions of Eq.(4.6) we obtain a complementary solution of Eq.(4.5) in the following form of a confluent 
hypergeometric function 
 

  	 
 , Pr*,
0 0a b

0 02
c 0 0 0

a bA M v a b 1
2

�
�� �) * � * � � � � *� �

� �
 (4.8) 

 
where 
 

  *Pr0a � , * *Pr 2
0b 4� � �  and A is the arbitrary constant.  (4.9) 

 
 The function M 	 
, ,0 0a b z  is Kummer’s function and it is defined (Abramowitz and Stegun, (1972) 
by 
 

  	 

	 

	 


, ,
!

n
0 n

0 0
0n 1 n

a z
M a b z 1

b n

�

�

� �+ , 

 

  
	 
 	 
	 
 	 


	 
 	 
	 
 	 


,

.

0 0 0 0 0n

0 0 0 0 0n

a a a 1 a 2 a n 1

b b b 1 b 2 b n 1

� � � � � � � � � � � �

� � � � � � � � � � � �

 

 
 It is to be noted that Eq.(4.5) admits a closed form particular solution if only we choose 0( =2 and 
this is obtained as 
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E .

Pr* Pr* *Pr*

2
20

p
S

4 2
�

) * � *
� ��

  (4.10) 

 
 Substituting Eqs (4.9) and (4.10) in Eq.(4.8) we get the solution of Eq.(4.5) as  
 

  
	 


E( ) , Pr*, ,
Pr* Pr* * Pr*

0 0a b 2
20 0 02

0 0
a b SA M 2 a b 1

2 4 2

�
�� �) * � * � � � � * � *� � � ��� �

  (4.11) 

 
which satisfies  the second boundary condition at *=0 of Eq.(4.6). To determine the arbitrary constant A we 
use the other boundary condition of Eq.(4.6) and obtain  
 

  	 


	 


E Pr*
Pr* * Pr*

Pr* , Pr*, Pr*
0 0

2
0

a b
0 02 0 0

S1
4 2

A
a bM 2 a b 1

2

�

�
� ��

�
�� �� � � � � �� �

� �

. (4.12) 

 
 Therefore, after substituting the value of A, we rewrite the solution in terms of the variable   and we 
get 
 

  	 

	 
 , Pr*, Pr*

, Pr*, Pr*

0 0
0

0

0

a bS
S2 0 0

1 0 0
2S

1
0 0

0 0

a b1 C e M 2 a b 1 e
2 C e

a bM 2 a b 1
2

�� ��  � � �  � �

�  

�� �� � � � � �� �
� �)  � �

�� �� � � � �� �
� �

 (4.13) 

 

where  
	 


E Pr* .
Pr* *Pr*

2
0

1
SC

4 2
�

�
� ��

  (4.14) 

 
 We know that the wall temperature gradient is an important parameter associated with the heat 
transfer analysis. Hence, we obtain an expression for the dimensionless wall temperature gradient 	 
0 )  as 
 

 	 
 	 

, Pr*, Pr*

Pr* .
( Pr*) , Pr*, Pr*

0 0
0 0

0 0 0 0
1 0 0 1 0

0 00 0
0 0

a bM 1 a b 2
a b 4 a b20 1 C S S 2C S

a b2 a b 1 2M 2 a b 1
2

 

! "�� �� � � � �� �# $� �� � �� �� �# $) � � � �� � � ��� � � � �# $� �� � � � � � �� �# $� �% &

 (4.15) 

 
 Substituting the values of * *,1k 0 0� � � in the Eqs (4.13) – (4.15) we obtain the result of 
Elbashbeshy (2001) in the absence of suction. Conventionally, heat transfer analysis is carried out by means 
of dimensionless number of temperature gradient, known as the local Nusselt number. The local Nusselt 
number in the present case is derived as 
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Nu

Re

w y 0

x T
T T y

x0
l 2

� �

 

� �

� � �� 
� �

� )

  (4.16a) 

 
where Re is the local Reynolds number and it is defined as  
 

  Re .wU l
�

�
 (4.16b) 

 
Case B: Prescribed Exponential Order Heat Flux (PEHF) 
 
 In this case we assume that the stretching surface is subjected to exponential order heat flux with the 
axial direction. Therefore we employ the following prescribed exponential law heat flux boundary condition. 
 

  

exp at ,

as .

1
1

w

1Tk T x y 0
y 2l

T T y�

� � ( �
 � �� � �� � � �
 � �� �

� ��
 (4.17) 

 
 Here, and1 1T( are the parameters of temperature distribution on the stretching surface. 
 We seek a local similar solution for temperature and so we define the dimensionless temperature 
variable as follows 
 

  	 
 .
exp1 1 1

0

T Tg
T 2 l x
k U 2l

��
 �

( (� �
� �
� �

 (4.18) 

 
 Using this dimensionless variable and Eqs (3.1) – (3.3) in Eq.(2.6) we obtain the dimensionless 
temperature equation as  
 
  	 
Pr Pr * Pr E 2

1g fg v f g f      � � �� � �   (4.19) 

 
where 
 

  E
14

2 20 w

01
p 1

0

U k U
U2 lc T

U

�(
� �

� � �
( � �

                   and              Pr ,��
�

  (4.20) 

 
are the local Eckert number and the Prandtl number, respectively. 
 The non-dimensional temperature boundary conditions are 
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,

.

g 0 1

g 0

 � �

� �

 (4.21) 

 
 Equation (4.19) is of the same form as Eq.(4.2). However, the first boundary condition of Eq.(4.3) 
differs from that of the boundary condition (4.21). Therefore following the same procedure as described in 
the PEST case and making use of the boundary conditions of Eq.(4.21) we derive the solution for 	 
g   in 
the following form of a confluent hypergeometric function. 
 

  	 
 , Pr*, Pr* .
0 0

0 0 0
a bS s 2s0 02

2 0 0 1
a bg C e M 2 a b 1 e C e

2

�
�  �  �  �! " � � � � � � �# $% &

 (4.22a) 

 
 The expression for the constant 2C  is 
 

  

	 


	 


E Pr*
Pr* * Pr*

,
, Pr*, Pr*

Pr* , Pr*, Pr*
( Pr*)

3
0

2
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 (4.22b) 

and the expression for 1C  is given by Eq.(4.14) and expressions for 0a  and 0b  are given by Eq.(4.9). 
 In this boundary heating process (PEHF) the dimensionless wall temperature g(0) is obtained as 
 

  	 
 , Pr*, Pr* .0 0
2 0 0 1

a bg 0 C M 2 a b 1 C
2
�! "� � � � � � �# $% &

 (4.23) 

 
 The expression for the dimensional local wall temperature is 
 

  	 
exp .1 1 1
w

0

T 2 l xT T g 0
k U 2l�

� �( (
� � � �

� �
 (4.24) 

 
5. Results and discussion 
 
 A comprehensive mathematical model on momentum and heat transfer phenomena has been 
formulated for a boundary layer viscoelastic fluid flow over an exponentially stretching impermeable sheet 
in the presence of local heat source/sink. In the process of deriving the mathematical solution, the highly 
non-linear partial differential equations characterizing flow and heat transfer phenomena have been 
converted into a set of non-linear quasi-ordinary differential equations by applying suitable pseudo--similar 
transformations. Sequential solutions of the transformed non-dimensional stream function equation are 
obtained by solving the non-linear Riccati type equation analytically. The zero-order approximate solution 
for the dimensionless stream function 	 
f   which satisfies all the boundary conditions has been obtained 

analytically. First-order approximate solution of 	 
f   can also be derived analytically from Eq.(3.13) in the 
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form of a confluent hypergeometric Whittaker’s function (Khan). However, numerical solutions of Eq.(3.4) 
for 	 
f  and 	 
f   may be obtained. In order to solve the forth order non-linear Eq.(3.4) numerically it is 
essential to have one more boundary condition in addition to the given three boundary conditions of Eq.(3.5). 
We generate the fourth boundary condition by substituting the boundary conditions of Eq.(3.5) in Eq.(3.4) 
and we get  
 

  	 
 	 

	 


*

*
.

2
1

1

4 3k f 0
f 0

2 1 3k
  

   
�

�
�

 

 
 Now using all the four boundary conditions, we obtain a numerical solution of the differential 
Eq.(3.4) for 	 
f   and 	 
f   by employing the Runge-Kutta fourth order method involving shooting. An 

analysis of Fig.2. reveals that numerical solutions match very well the solutions of zero-order 	 
 	 
0f   and 
	 
 	 
0f   in the region very close to the boundary. In view of this we have considered a zero-order 

approximate solution of 	 
f   and obtained the exact analytical solution of the heat transfer equation in the 
form of confluent hypergeometric functions (Eq.(4.13) - (4.15) and (4.22) – (4.23)). All these solutions 
involve an exponential dependence of (i) the pseudo-similarity variable   (ii) stream function 	 
f   (iii) 
velocity component 	 
  f  and (iii) temperature distribution 	 
)  and 	 
g   on the coordinate x along the 
direction of stretching. 
  Some qualitative behaviors of the flow and heat transfer characteristics, are demonstrated in Figs 2-6 
and Tabs 1-2. The graphs for the non-dimensional velocity profile 	 
f   for different values of the local 

viscoelastic parameter *
1k  are also plotted in Fig.2. From this figure we notice that the effect of the local 

viscoelastic parameter *
1k  decreases velocity throughout the boundary layer flow field which is quite obvious. 

The graphs of the non-dimensional local skin-friction parameter fC  vs. the local viscoelastic parameter *
1k  for 

different values of the local Reynolds number Re are shown in Fig.3. This figure demonstrates that the increase 
of the non-dimensional local viscoelastic parameter *

1k  leads to the decrease of the local skin-friction parameter 

fC . There will be a separation of the boundary layer for the value of the local viscoelastic parameter *
1

2k
7

� . 

This result is the consequence of the fact that an elastic property in a viscoelastic fluid reduces frictional force. 
This result has significant bearing on the polymer processing industry, as the choice of a higher order 
viscoelastic fluid would reduce the power consumption for stretching the boundary sheet. The effect of the 
local Reynolds number on the skin-friction coefficient is also seen to reduce the local skin-friction coefficient 

fC as a reduction of the viscous property of the fluid results in the decrease of frictional force. Figures 4a and 
4b demonstrate the effect of the Prandtl number Pr and local Eckert number E on the non-dimensional 
temperature distribution when the heat source parameter of strength * .0 3� �  is present in the boundary layer 
for PEST and PEHF cases, respectively. These graphs show that the increase of the Prandtl number Pr results in 
the decrease of temperature distribution at a particular point in the flow region. This behaviour occurs because 
there would be a decrease of the thermal boundary layer thickness with the increase of values of the Prandtl 
number Pr as a result of a slow rate of thermal diffusion. However, in the presence of viscous dissipation 
	 
E 0,  there may be a higher temperature distribution near the boundary for higher values of the Prandtl 
number. It is interesting to note that this region of higher temperature distribution for higher values of the 
Prandtl number Pr decreases with the increase of the viscoelastic parameter *

1k . The wall temperature 
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distribution is seen to be at unity in the PEST case for all values of Pr, E  and *
1k . However, it may be other 

than unity in the PEHF case due to the adiabatic temperature boundary condition. Increasing the values of the 
local viscoelastic parameter *

1k  is seen to increase the temperatures distribution in the boundary layer, which is 
the consequence of the property of non-Newtonian viscoelastic fluid that leads to the increases of thermal 
boundary layer thickness. The results of the PEHF case are qualitatively similar to those of PEST but 
quantitatively they differ. It is of interest to note that the effect of increasing the values of the local Eckert 
number E increases temperature distribution in the flow region for both the cases of PEST and PEHF. This is 
because the heat energy generated in the fluid due to frictional heating results in the temperature enhancement. 
In conformity with reality we notice that temperature distribution attains its peak value near the boundary in the 
presence of viscous dissipation.  
 
Table 1.  Wall temperature gradient 	 
0 �)  in PEST case for different values of Prandtl number Pr, Eckert 

number E, viscoelastic parameter *
1k , and heat Sourc/Sink parameter *� . 

 

1k  Pr E 
	 
0 �)  

with *� = 0.2 with *� = 0.0 with *� = -0.2 

10-9 
0.2 

5 0 3.21
3.15 

3.26 (3.257)
3.22 (3.219) 

3.31 
3.28 

10-9 
0.2 

8  4.17
4.12

4.20
4.17

4.24 
4.21 

10-9 
0.2 

5 0.5 2.26
1.86

2.50
2.32

2.66 
2.55 

10-9 
0.2 

8  2.94
2.62

3.15
2.91

3.31 
3.12 

 
(The values in the parenthesis are results of Khan and Sanjayanand (2005) which match our results) 
  
Table 2.  Wall temperature g(0) in PEHF case for different values of Prandtl number Pr, Eckert number E, 

viscoelastic parameter *
1k  and heat Sourc/Sink parameter *� . 

 

1k  Pr E 
g(0) 

with *� = 0.2 with *� = 0.0 with *� = -0.2 
10-9 
0.2 

5 0 0.311
0.317 

0.307(0.307)
0.311(0.311) 

0.302 
0.305 

10-9 
0.2 

8  0.243
0.240

0.238
0.239

0.236 
0.237 

10-9 
0.2 

5 0.5 0.607
0.729

0.539
0.591

0.497 
0.527 

10-9 
0.2 

8  0.534
0.607

0.488
0.542

0.454 
0.497 

 
(The values in the parenthesis are results of Khan and Sanjayanand (2005) which match the results obtained 
in the present study) 
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Fig.3.  Graph of skinfriction parameter fC  vs viscoelastic parameter *

1k  for different values of Reynolds 
number Re. 

 

 
 
Fig.4a.  Dimensionless temperature profile 	 
)   for various values of Prandtl number Pr and Eckert number 

E in PST case when * . .0 3� �  
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Fig.4b. Dimensionless temperature profile 	 
g   for various values of Prandtl number Pr and Eckert number 

E in PEHF case when * . .0 3� �  
 
 The dimensionless temperature profile 	 
)   for various values of the Prandtl number Pr and local 
Eckert number E are shown in Fig.5a. and Fig.5b. for PEST and PEHF cases, respectively, when there is no 
local heat source/sink present in the boundary layer. A comparison of Fig.4a and Fig.5a shows that the 
region of higher temperature near the boundary for higher values of the Prandtl number reduces significantly 
in the absences of heat source/sink in the boundary layer. Other qualitative features of the graphs of Fig.5a 
and Fig.5b are exactly the same as those in Figs 4a and 4b, respectively, except for a reduction of magnitude 
of temperature throughout the boundary layer. The profile for dimensionless temperature 	 
)   for the same 
data, as those in Fig.5, is shown in Fig.6 when there is local heat sink present in the boundary layer. From 
this figure we observe that temperature attains its peak value near the boundary for lower values of the 
Prandtl number and higher values of the local viscoelastic parameter in the presence of local heat sink and 
viscous heat sink dissipation in the boundary layer. A comparative study of Fig.5. and Fig.6 shows that  the 
effect of heat sink present in the region causes a reduction of the values of temperature throughout the 
boundary layer. 
 We show the numerical values of the non-dimensional wall temperature gradient 	 
0 �)  in the 
PEST case for different values of the Prandtl number Pr, local Eckert number E and local viscoelastic 
parameter *

1k  in Tab.1. An analysis of the tabulated values reveals that the increase of the values of the 
Prandtl number Pr results in the increase of the values of the wall temperature gradient 	 
0 �) . By 

increasing the values of the local viscoelastic parameter *
1k  we notice that the wall temperature gradient 

	 
0 �)  is decreased. The effect of viscous dissipation 	 
E 0,  reduces the wall temperature gradient 

0.0 0.5 1.0 1.5 2.0
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2.0
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k1
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0 �) . The effect of the local source and sink parameter decreases and increases the temperature gradient 

	 
0 �) , respectively. The wall temperature gradient 	 
0 �)  attains a minimum value with the decrease of 

the Prandtl number Pr  and increase of the local viscoelastic parameter *
1k and local Eckert number E in the 

presence of heat/source. The rate of heat transfer can be controlled by suitably choosing the values of the 
Prandtl number, local Eckert number, local viscoelastic parameter and local source/sink parameter. 

 Table 2 is plotted for the different values of the Prandtl number Pr, local Eckert number E and local 

viscoelastic parameter *
1k  for the non-dimensional wall temperature 	 
g 0  in the PEHF case. An analysis of 

the tabular results shows that as the value of the Prandtl number Pr increases the non-dimensional wall 
temperature 	 
g 0  decreases and increasing the values of the local viscoelastic parameter *

1k  leads to the 

increase of the non dimensional wall temperature 	 
g 0 . The effect of the local source and sink parameter 
*�  is to increase and decrease in surface temperature respectively. Hence we can control the surface 

temperature distribution by changing the values of the Prandtl number, local Eckert number, local 
viscoelastic parameter and local source/sink parameter. 
 

 
 
Fig.5a.  Dimensionless temperature profile 	 
)   for various values of Prandtl number Pr and Eckert number 

E in PEST case when * . .0 0� �  
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Fig.5b. Dimensionless temperature profile 	 
g   for various values of Prandtl number Pr and Eckert number 

E in PEHF case when * . .0 0� �  
 

 
 

Fig.6a.  Dimensionless temperature profile 	 
)   for various values of Prandtl number Pr and Eckert number 

E in PEST case when * . .0 3� � �  
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Fig.6b.  Dimensionless temperature profile 	 
g   for various values of Prandtl number Pr and Eckert number 

E in PEHF case when * . .0 3� � �  
 
6. Conclusions  
 
 A mathematical problem has been formulated on momentum and heat transfer phenomena in a 
viscoelastic second order fluid flow over an exponentially stretching impermeable sheet with heat 
source/sink present in the boundary layer. In the solution procedure highly non-linear partial differential 
equations are converted into a set of quasi-ordinary differential equations by applying pseudo-similarity 
transformations. Sequential solutions of the transformed momentum equation are obtained analytically by 
solving the non-linear Riccati type equation repeatedly. A zero-order solution for the stream function 	 
f   
and velocity function 	 
f   are obtained analytically. These solutions are compared with the numerical 
solution of the problem obtained by employing the Runge-Kutta fourth order method involving shooting and 
good accuracy has been found near the region close to the boundary. Considering the zero-order solution for 
	 
f   the solutions of the heat transfer equation are derived in the form of a confluent hypergeometric 

function for both cases: (i) Prescribed Exponential Order Surface Temperature (PEST) and (ii) Prescribed 
Exponential Order Surface Heat Flux (PEHF). Expressions are also obtained for the dimensionless local 
skin-friction coefficient fC , temperature gradient in the PEST case and surface temperature in the PEHF 
case. The derived solutions involve an exponential dependence of the stretching velocity, prescribed surface 
temperature and prescribed boundary heat flux on the flow directional coordinate. 
 The important findings of the graphical analysis of the results of the present problem are as follows. 

1.  Zero-order analytical solutions of the stream function 	 
f   and velocity function 	 
f   have good 
accuracy near the region very close to the boundary sheet. 
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2.  The effect of increasing the values of the local viscoelastic parameter *
1k  decreases the velocity 

throughout the boundary layer. 
3.  The effect of increasing the values of the local viscoelastic parameter *

1k  decreases the local skin-
friction parameter fC and the effect of the local Reynolds number Re also decreases the skin-friction 

parameter .fC  
4.  The effect of increasing the values of the Prandtl number Pr decreases temperature distribution in the 

flow region in the absence of viscous dissipation. Whereas, the effect of increasing the values of the 
local viscoelastic parameter *

1k  increases the temperature distribution in the flow region.  
5.  In the presence of viscous dissipation 	 
E 0,  and local heat source 	 
* 0� �  there may be a higher 

temperature distribution near the boundary for higher values of the Prandtl number. This region of 
higher temperature distribution for higher values of the Prandtl number Pr decreases with the increase 
of the local viscoelastic parameter *

1k . 
6.  The rate of heat transfer from the stretching sheet to the fluid can be controlled by suitably choosing 

the values of the Prandtl number Pr and local Eckert number E, local viscioelastic parameter *
1k  and 

local heat source/ sink parameter *.�  
7.  The wall temperature gradient 	 
0 �)  attains a minimum value with the decrease of the Prandtl 

number Pr and increase of the local viscoelastic parameter *
1k  and local Eckert number E in the 

presence of a heat/source. 
8.  The surface temperature distribution can be affected by changing the values of the Prandtl number, 

local Eckert number, local viscoelastic parameter and local source/sink parameter. 
9.  The limiting cases of the results of this paper when *

1k 0�  and * 0� �  are in excellent agreement with 
the results of Elbashbeshy (2001) in the absence of suction. 
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Nomenclature 
 
 fC   – local skin-friction coefficient  
 E   – local Eckert number 
 k   – thermal conductivity  
 0k   – elastic parameter 

 *
1k   – local viscoelastic parameter 

 l   – characteristic length 
 Nu   – local Nusselt number 

 Pr   – Prandtl number 
*Pr   – modified Prandtl number 

 Re   – local Reynolds number  
 Q   – dimensional source/sink parameter 
 wT   – wall temperature 
 T�   – temperature far away from the wall  
 0U   – characteristic velocity 
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wU   – stretching velocity at the wall 
,u v   – velocity components 

 ,0 0T(  – temperature parameters in PEST case 
 ,1 1T(  – temperature parameters in PEHF case 

 *�   – non-dimensional local source/sink parameter 
    – pseudo-similarity variable 
 �   – limiting viscosity at small rate of shear 
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